Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels

نویسندگان

  • Ana Paula Perez
  • Cecilia Mundiña-Weilenmann
  • Eder Lilia Romero
  • Maria Jose Morilla
چکیده

BACKGROUND Molecules taken up by olfactory and trigeminal nerve neurons directly access the brain by the nose-to-brain pathway. In situ-forming mucoadhesive gels would increase the residence time of intranasal material, favoring the nose-to-brain delivery. In this first approach, brain radioactivity after intranasal administration of (32)P-small interference RNA (siRNA) complexed with poly(amidoamine) G7 dendrimers (siRNA dendriplexes) within in situ-forming mucoadhesive gels, was determined. MATERIALS (32)P-siRNA dendriplexes were incorporated into in situ-forming mucoadhesive gels prepared by blending thermosensitive poloxamer (23% w/w) with mucoadhesive chitosan (1% w/w, PxChi) or carbopol (0.25% w/w, PxBCP). Rheological properties, radiolabel release profile, and local toxicity in rat nasal mucosa were determined. The best-suited formulation was intranasally administered to rats, and blood absorption and brain distribution of radioactivity were measured. RESULTS The gelation temperature of both formulations was 23°C. The PxChi liquid showed non-Newtonian pseudoplastic behavior of high consistency and difficult manipulation, and the gel retained 100% of radiolabel after 150 minutes. The PxCBP liquid showed a Newtonian behavior of low viscosity and easy manipulation, while in the gel phase showed apparent viscosity similar to that of the mucus but higher than that of aqueous solution. The gel released 35% of radiolabel and the released material showed silencing activity in vitro. Three intranasal doses of dendriplexes in PxCBP gel did not damage the rat nasal mucosa. A combination of (32)P-siRNA complexation with dendrimers, incorporation of the dendriplexes into PxCBP gel, and administration of two intranasal doses was necessary to achieve higher brain radioactivity than that achieved by intravenous dendriplexes or intranasal naked siRNA. CONCLUSION The increased radioactivity within the olfactory bulb suggested that the combination above mentioned favored the mediation of a direct brain delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoemulsion based Intranasal Delivery of Antimigraine Drugs for Nose to Brain Targeting

The objective of this study was to develop intranasal nanoemulsion and gel formulations for rizatriptan benzoate for prolonged action. Nanoemulsion formulations were prepared by constructing pseudo-ternary phase diagrams using lipophilic and hydrophilic surfactants and water. Various mucoadhesive agents were tried out to form thermo-triggered mucoadhesive nanoemulsions. Mucoadhesive gel formula...

متن کامل

INTRANASAL THERMOREVERSIBLE MUCOADHESIVE GELS: A Review

Almost 40% of active Pharmaceutical ingredients have low oral bioavailability, high hepatic first-pass metabolism and also less efficient in crossing the blood brain barrier for brain targeting through oral delivery. To overcome this problem the various system such as: nasal spray, gels, emulsions, droplets, suspensions, powders and thermoreversible mucoadhesive gels etc have been studied for n...

متن کامل

Intra Nasal In situ Gelling System of Lamotrigine Using Ion Activated Mucoadhesive Polymer

Background A novel drug delivery system for treating acute epileptic condition. Objective To develop an intranasal mucoadhesive formulation of Lamotrigine (LTG) loaded insitu gel, for the treatment of epilepsy to avoid possible side effects and first pass metabolism associated with conventional treatment. Methods Lamotrigine was loaded into different polymeric solutions of gellan and xantha...

متن کامل

Antibody h-R3-dendrimer mediated siRNA has excellent endosomal escape and tumor targeted delivery ability, and represents efficient siPLK1 silencing and inhibition of cell proliferation, migration and invasion

The major obstacle to developing siRNA delivery is their extracellular and intracellular barriers. Herein, a humanized anti-EGFR monoclonal antibody h-R3 was developed to modify the self-assembled binary complexes (dendriplexes) of PAMAM and siRNA via electrostatic interactions, and two common ligands HSA and EGF were used as a control. Compared to dendriplexes, h-R3/EGF/HSA-dendriplexes showed...

متن کامل

Visualizing the Attack of RNase Enzymes on Dendriplexes and Naked RNA Using Atomic Force Microscopy

Cationic polymers such as poly(amidoamine), PAMAM, dendrimers have been used to electrostatically complex siRNA molecules forming dendriplexes for enhancing the cytoplasmic delivery of the encapsulated cargo. However, excess PAMAM dendrimers is typically used to protect the loaded siRNA against enzymatic attack, which results in systemic toxicity that hinders the in vivo use of these particles....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012